加齢研セミナー

日	時:	令和元年7月4日(木)午後5時30分~午後6時30分
		Thursday, 4 July 2019, 17:30~18:30
場	所:	加齢医学研究所スマートエイジング研究棟2階セミナー室
		Seminar Room,Center for Smart Aging Research 2F,IDAC
講	師:	星 美奈子 Hoshi Minako
所	属:	公益財団法人 神戸医療産業都市推進機構 先端医療研究センター
		神経変性疾患研究部長 教授
		Professor, Department of Brain and Neurodegenerative Disease
		Research, Institute of Biomedical Research and Innovation Foundation
		for Biomedical Research and Innovation at Kobe
演	題:	Na ⁺ , K ⁺ -ATPase α 3 is a NEW death target of Alzheimer amyloid- β assembly.
担	当:	瀧 靖之(スマート・エイジング学際重点研究センター・内線 8582)
		Yasuyuki Taki
		Co-Deputy Director, Smart-Aging Research Center, Tohoku University
		Professor, Department of Nuclear Medicine and Radiology,
		Institute of Development, Aging and Cancer, Tohoku University,ext8582
要 旨: Alzheimer's disease (AD) impairs cognitive function, initially by affecting neuronal synaptic		
connections and eventually by degeneration of neurons themselves. This brain damage is thought to be		
caused by a small protein, the amyloid β -protein (A β), which becomes neurotoxic by forming varieties of		
	assemblies, collectively referred to "AB oligomers." Our laboratory has long been focusing on	
understanding mechanisms of neurodegeneration in AD and has identified AB oligomer from AD patient		
brains, termed amylospheroids (ASPD), as responsible for neurodegeneration (Hoshi et al. PNAS2003,		
Noguchi et al. JBC2009). Then, we discovered that the neuron-specific α 3 subunit of the Na ⁺ , K ⁺ -ATPase		
pump (NAK α 3), the catalytic subunit that is essential for neuronal excitability, is a toxic target for ASPD		
(Ohnishi et al. PNAS2015). This is a new system that involves pre-synaptic calcium hyperactivation,		
which is triggered by impairing NAK α 3-derived NAK pump activity, leading to neurodegeneration		
(Figure 1). Before this finding, NAK α 3 had long been considered to be too essential to be the cause of neurodegenerative disease. However, following our finding, the impairment of NAK α 3 owing to the		
binding with misfolded protein assemblies were reported in Parkinson's disease (Shrivastava et al. EMBO		
	J 34, 2408-2423, 2015) and ALS (Ruegsegger et al. Act Neuropathlogy 131, 427-451, 2016). This	
suggested that the NAK α 3 impairment might be a general pathway leading to neurodegenerative diseases.		
We also discovered that ASPD-binding tetrapeptides blocked the ASPD:NAK α 3 interaction and		
protected mature neurons from ASPD neurotoxicity. Surprisingly, ASPD and α -synuclein share the		
ess	essential binding region in the fourth extracellular loop of NAK α 3. I thus have suggested that a new AD	
trea	treatment strategy might be based on blocking aberrant ASPD-NAKα3 interaction by masking the ASPD	
	surface with specific peptidomimetics, as shown in figure 2. Recently, we started a collaboration with Dr	
		Toyoshima from University of Tokyo who determined the crystal structures of Ca-ATPase and
		Because ASPD binds the region essential for the rocking motion of the NAK α 3 pump, it is
		le that ASPD binding impairs NAK α 3 function. At the seminar, I would be happy to discuss
abo	tl	at we shall do as a part to upgover distribution and function of NAV of in health and discass

Figure 1.Aβ receptor/ligand systems. Figure 2.Anti-ASPD therapy for Alzheimer's disease.

主催/加齡医学研究所研究会同窓会